
Modernizing with
Confidence: A Phased
Co‑Existence Strategy for
Legacy Transformation

By Leigh-Ann Silver

Executive Summary
Enterprises that modernize mission‑critical legacy
systems can unlock dramatic gains—up to 353 %
ROI and 45 % lower IT operating costs—yet most
initiatives struggle with skills shortages, hidden
dependencies, and an uncompromising need for
uptime. [1] 

This whitepaper discusses OpenLegacy’s phased
and agile modernization strategy - handling the
co‑existence practice: an evidence‑based
framework that balances innovation with
operational continuity. The framework combines
automated analysis, a structured migration
planner, and a library of decoupling patterns that
enable legacy and cloud workloads to run
side‑by‑side while change proceeds incrementally.

Built to Support Any Modernization
Methodology

Whether an enterprise chooses to refactor, re-
platform, rewrite, repurchase, retain, or retire
applications, OpenLegacy’s phased migration
approach adapts easily. Service façades allow
legacy and modern modules to coexist so teams
can deliver new digital capabilities—APIs, real‑time
data feeds, AI integration, etc.—immediately while
progressively moving workloads to the cloud.
This ensures today’s innovations aren’t delayed by
tomorrow’s migrations.

353%
ROI

45%

lower IT operating costs

Key Takeaways for
Executives

 Reduce modernization risk through
pre‑migration dependency mapping and
automated service generation

 Adopt a step‑by‑step strategy that
delivers measurable value early—without
the cost or disruption of a “big‑bang”
cut‑over

 Future‑proof investments by exposing core
business logic and data as cloud‑ready
APIs that fuel analytics and AI initiatives.

Key Takeaways for
Techn ical Leaders

 Leverage internal, external, data‑layer, and
logic‑layer decoupling patterns to
decouple safely at multiple layers

 Bypass middleware with direct,
standards‑based connectivity to
mainframe and mid‑range platforms

 Accelerate delivery with AI‑assisted code
& test generation, CI/CD‑ready artifacts,
and automated regression testing

 Accelerate connectivity with an extensive
library of pre‑configured connectors for
legacy systems spanning CICS, AS/400,
DB2, VSAM, Oracle, and more—eliminating
months of custom adapter effort.

1

At the same time, competitive pressures and cloud
economics are driving boards to demand faster
release cycles, AI‑readiness, and cost rationalization.
A modernization strategy that de‑risks coexistence
is therefore essential.

2

The Modernization Imperative:  
Challenges, Impacts & OpenLegacy Response
Despite decades of new investment, legacy platforms still underpin
mission‑critical workloads in banking, insurance, manufacturing,
and the public sector. Modernization is therefore not optional—but
it must be executed without jeopardizing daily operations.

System Complexity &  
Hidden Dependencies

Decades‑old code, proprietary
protocols, and undocumented
inter‑module calls raise the risk of
regression failures if changes are
made blindly.

Skills Shortage &  
Tribal Knowledge

Retiring experts leave gaps that
are hard to fill, extending project
timelines.[2]

Low‑code wizards, AI‑assisted
code templates, and a rich
connector catalog reduce reliance
on scarce mainframe specialists,
empowering your existing
development teams to deliver
changes safely.

Manual Integration Effort Traditional middleware and
bespoke adapters create long
feedback cycles  
(4–6 months per interface).

Automated API generation and
pre‑configured connectors
compress interface delivery to
days or weeks, accelerating your
digital initiatives and keeping you
ahead in the competitive market.

Zero‑Downtime Mandate Regulated industries cannot
tolerate service disruption;
modernization must proceed in
flight.

The Phased Co‑Existence
Framework keeps legacy and
cloud workloads running
side‑by‑side, supported by dual
factories (Integration & Migration)
and rolling, validated releases.

Hub Planner automatically maps
program calls, database
interactions, and batch
dependencies; generated façade
APIs encapsulate complexity while
automated contract tests provide
guardrails, relieving you from the
burden of system complexity and
hidden dependencies.

CHALLENGE IMPACT How OpenLegacy Responds

OpenLegacy removes the traditional blockers
—complexity, skills gaps, slow integration
cycles, and downtime risk—allowing
enterprises to innovate immediately while
modernizing on their own schedule.

3

A Phased Co‑Existence
Approach

OpenLegacy’s approach focuses on co‑existence.
The goal is to create a unified landing zone where
legacy and modern components interact through
generated APIs while workloads migrate in
manageable slices.

Unified Landing Zone

The Unified Landing Zone, a secure, cloud‑native
substrate—container or serverless—hosts
lightweight service façades generated directly from
legacy artifacts. These façades expose data & logic
via REST/JSON, gRPC, or events, eliminating extra
middleware hops. This approach not only simplifies
the architecture but also accelerates the integration
process, reducing the risk of service disruption
during the modernization process.

Dual Factory Model

 Integration Factory – Automates API generation
for legacy endpoints so new digital services can
call them unchanged

 Migration Factory – Generates modernized code
& data access layers when components are ready
to move off‑platform.

Both factories feed a single CI/CD pipeline, ensuring
consistent governance, security scans, and
automated testing.

Continuous Validation Loop

Every change triggers targeted test suites
auto‑generated from the original legacy contracts,
dramatically shortening regression cycles. This
continuous validation loop is a key component of the
modernization strategy, ensuring that each step of
the process is thoroughly tested and validated,
thereby reducing the risk of unexpected issues or
service disruptions.

4

Decoupling Patterns:
Building Blocks for
Risk‑Free Transformation

OpenLegacy operationalizes complementary
patterns that can be applied independently or  
in combination:

Internal Decoupling Replace program‑to‑program calls
with remote APIs so individual
modules can be re‑written or
re‑hosted.

External Decoupling Intercept existing MQ/CTG/IMS
gateways, transforming payloads
for new cloud services.

Front‑end channels must remain
intact while back‑end logic
migrates.

Data‑Layer Decoupling Extract embedded SQL and call
remote data services; supports
hybrid DB topologies.

Move data to cloud databases
without rewriting COBOL.

Logic‑Layer Decoupling Isolate business rules from
screen‑handling code, exposing
them as reusable micro‑APIs.

Unlock core algorithms for reuse
in mobile or AI apps.

Data Extraction & Sync eal‑time CDC or batch ETL keeps
legacy and cloud data stores
aligned.

Analytical workloads require
cloud‑native scale; regulatory
constraints demand dual writes.

Need to refactor a high‑change
module without touching the full
monolith.

PATTERN PURPOSE TYPICAL TRIGGER

Guiding Principle: Decouple only as much as
necessary for the next modernization step;
avoid unnecessary re‑writes. This principle
guides the modernization approach, ensuring
that the focus is on incremental and
manageable changes that deliver immediate
value, rather than large-scale rewrites that can
introduce unnecessary complexity and risk.

5

Implementation Roadmap & Best Practices

1 Portfolio Assessment & Dependency Mapping – Use
OpenLegacy Hub Planner to visualise inter‑program
calls, database touchpoints, and batch schedules.

3 Establish the Integration Factory – Generate and
deploy façade APIs; integrate security and
observability early.

4 Iterate with Migration Factory – Modernize selective
components; validate via automated contract tests.

5 Retire Legacy Interfaces Incrementally -
Decommission gateways or modules once traffic fully
migrates.

2 Choose Decoupling Points – Apply patterns where
they deliver immediate value with minimal risk.

Success Metrics may include release frequency,
mean‑time‑to‑restore (MTTR), cloud consumption, and
reduction in manual hand‑offs.

6

7

Technical Deep Dive: Architecture & Automation

Illustrative Case Snapshots*

Direct Connectivity Layer

Generated connectors, drawn from OpenLegacy’s
extensive catalog of pre‑configured connectors—
including native CICS, IMS, VSAM, DB2, AS/400, SAP,
and Oracle access—use native protocols to avoid the
performance penalties of middleware stacks.

API & Service Generation Pipeline

 Model Extraction – Parsers read copybooks,
PCML, RPG, or PL/I definitions

 Code Templates – AI‑assisted templates emit
Java Spring‑Boot micro‑services

 Test Harness – Request/response pairs captured
from production are converted into JUnit or
PyTest suites.

Security & Compliance Controls

 OAuth2/OIDC wrappers, field‑level encryption,
role‑based access mapped to RACF or LDAP

 Audit logs streamed to SIEM; lineage preserved
for regulatory evidence.

DevOps Alignment

Artifact repositories, container registries, and IaC
modules integrate with standard pipelines (GitHub
Actions, Jenkins, Azure DevOps). Rolling upgrades
enable zero‑downtime releases.

Tier‑1 European Bank Achieve real‑time
payments while core
remains on z/OS

External + Data‑Layer
Decoupling

24×7 instant‑payment
rail with zero core
outages; cut CTG
licensing costs.

Global Insurer Separate document
management from
policy admin

Internal + Logic‑Layer 8–10× faster delivery;
retired CICS gateway.

Multinational Life
Company

Multiple mainframes,
phased cloud move

All 5 patterns Deployed APIs on AWS
Fargate; maintained
policy service continuity.

*All company names anonymised or used with permission.

Enterprise Challenge Pattern M ix Outcome

8

Future Outlook
Emerging AI copilots will further automate code
comprehension, test generation, and optimization.
Meanwhile, multi‑cloud demands will increase the
value of a landing‑zone‑agnostic approach that
abstracts core logic into portable APIs.

 You don't have to finish a multi‑year
migration before your teams can start experimenting
with AI/ML, real‑time analytics, or future innovations
—the decoupled slice of your legacy estate is ready
on day one.

Net result:

[1] Forrester Consulting, The Total Economic Impact™ of OpenLegacy, 2023.

[2] Gartner, “Assessing the Mainframe Talent Gap,” 2024.

About OpenLegacy
OpenLegacy is an AI‑driven platform purpose‑built
for continuous, phased, structured legacy
modernization. By combining automated analysis,
instant API generation, and a library of proven
decoupling patterns, OpenLegacy enables
enterprises to modernize at their own pace—without
the risk.

© 2025 OpenLegacy Inc. All rights reserved.

